收集数据后,你要做的第一件事往往就是对它进行分析。这通常都免不了要计算均值、标准差和标准误差。本文将向你展示如何计算。

步骤方法 1 的 4:数据

1获得一组你想要分析的数据。这些信息也称为样本。例如,一个由5个学生组成的班级接受了一次测试,测试结果为12, 55, 74, 79和90。方法 2 的 4:均值

1计算均值。把所有数值相加,再除以总体大小:均值 (μ) = ΣX/N,这里的 Σ 是求和(加法)符号, xi 是每个单一数值,而N则是总体大小。

在上例中,均值 μ 就是 (12 55 74 79 90)/5 = 62。方法 3 的 4:标准差

1计算标准差。它表征总体的分布情况。 标准差 = σ = sqrt [(Σ((X-μ)^2))/(N)].对以上给出的例子,标准差是 sqrt[((12-62)^2 (55-62)^2 (74-62)^2 (79-62)^2 (90-62)^2)/(5)] = 27.4。(注意,如果要求样本的标准差,则应除以n-1,即样本大小减1。方法 4 的 4:均值的标准误差

1计算(均值的)标准误差。它表征的是样本均值与总体均值的近似度。样本越大,标准误差就越小,样本均值与总体均值也就越接近。将标准差除以样本大小N的平方根即可得出标准误差。标准误差 = σ/sqrt(n)就以上的例子而言,如果从一个有50名学生的班级中抽取5个学生做样本,而50名学生的标准差为17 (σ = 21),则标准误差即为 17/sqrt(5) = 7.6。小提示均值、标准差和标准误差的计算对于分析正态分布的数据最有用。距离中心位置1个标准差的范围覆盖了约68%的数据,距离其2个标准差的范围覆盖了95%的数据,而3个标准差能覆盖99.7%的数据。随着样本大小的增加,标准误差会变小(分布范围变窄)。易用在线标准差计算器

警告仔细检查计算。计算中很容易出现失误,或是输入错误的数据。

声明:本站所收录作品、热点评论、图片等信息部分来源互联网,目的只是为了系统归纳学习和传递资讯。内容不代表本网站的观点和立场。请读者仅作参考,并请自行核实相关内容。本站所有图文由于未联系到知识产权人或未发现有关知识产权的登记,所有作品版权归原创作者所有,根据《信息网络传播权保护条例》,如不慎侵犯了你的权益,请联系我们告知,我们将做删除处理!