当你明白了如何去画一个一元二次方程,你会得到一个u字形或者倒u字形的曲线,也就是俗称的抛物线。画好一个一元二次方程有几个步骤。学习他们的最好办法就是看看下面的例子,并且自己跟着画画练习一下。

步骤1识别不同形式的一元二次方程。 一元二次方程可以被写成两种不同的形式:一般式和标准式. 两种形式都可以被选择出来画这个一元二次方程,这取决于你在解决问题时所获得的形式是哪一种。 当然,我们必须清楚一点那就是,我们所想到的一元二次方程的图像一定是抛物线的形状。对于一般式来说,一元二次方程看上去像这样: f(x) = ax2 bx c 其中 a, b, 和 c 都是实数并且a为非零数。

如下例:

f(x) = x2 2x 1

f(x) = 9x2 10x -8.为了画好一元二次方程,我们需要知道抛物线的定点,设为(h, k),已知: h = -b/2a 和 k = f(h)

对于标准式来说,一元二次方程变成了这样: f(x) = a(x - h)2 k ,其中 h, k 会直接给予你抛物线的定点顶点(h, k)。

2用适当的数字去替代变量。每一个代数问题都会给你一个有着变量的一元二次的方程.通常是以一般式的形态。 如下例:对于 f(x) = 2x2 16x 39,我们得到了a = 2, b = 16, c = 39

3计算h的值。一定要记得 h = -b/2a. 所以在我们下面的例子里, h = -16/2(2)。然后我们再来计算, 就可以达到h的值是-4。

4计算k的值。一定要记得 k = f(h)。通过之前的计算,我们得到了 h = -4。用这个数字把一般式中的x全部替代掉,我们就得到了k = 2(-4)2 16(-4) 39。 然后通过一系列的计算,我们就可以得到k = 7

5找到你的顶点。你的抛物线的顶尖就是(h, k)。在我们上面的例子中,我们的顶点是(-4, 7)。所以你的抛物线的顶点就被定位在了原点向左4个单位,然后再向上7个单位的位置。把这个画到你的图上去,一定要保证你有写坐标。

6画轴线。 一个对称的抛物线的轴线就在它的正中间。 总的来说就是抛物线的左边和右边呈镜像对称。

当一元二次方程的形式是f(x) = ax2 bx c时,抛物线的轴线是平行于y轴的,并且穿过顶点的那条线。所以在例子中,轴线是平行于y轴并且穿过点(-4, 7)的线。 轻轻地在你的图上做下标记。这不是图的一部分,但是会帮助你看清楚这抛物线是怎么弯曲的。

7找到抛物线开口的方向。在我们确定了抛物线的顶点和轴线之后,最后一件事情就是去找到这抛物线的开口究竟是朝上的还是朝下的。 如果“a”(x2的系数)是正的,那么抛物线的开口就是朝上的,反之就是朝下的。 也就是把开口朝上的抛物线上下颠倒。

所以在我们刚才的例子中,我们的抛物线的开口是朝上的,因为x2的系数是2,是正数。小提示听从你老师的话,取整数或用分数。这将帮助你正确地画一个一元二次方程。在f(x) = ax2 bx c上做标记, 如果b或c等于0的话, 这些数字就会消失。举个例子,12x2 0x 6 得出 12x2 6 因为0x是 0。

声明:本站所收录作品、热点评论、图片等信息部分来源互联网,目的只是为了系统归纳学习和传递资讯。内容不代表本网站的观点和立场。请读者仅作参考,并请自行核实相关内容。本站所有图文由于未联系到知识产权人或未发现有关知识产权的登记,所有作品版权归原创作者所有,根据《信息网络传播权保护条例》,如不慎侵犯了你的权益,请联系我们告知,我们将做删除处理!